

Left Atrial Appendage Closure: Clinical Data & Future Perspective

David R. Holmes, Jr., M.D. Mayo Clinic, Rochester TCTAP 2014 Seoul, Korea April 2014

Presenter Disclosure Information

David R. Holmes, Jr., M.D.

"Left Atrial Appendage Closure: Clinical Data & Future Perspective"

The following relationships exist related to this presentation:

Both Mayo Clinic and I have a financial interest in technology related to this research. That technology has been licensed to Boston Scientific.

Monsters

The monster snorkel: Allows your child to breathe comfortably without exposing vulnerable parts to an attack

- Stroke
- Death
- MI
- Bleeding
- Procedural complications

Stroke Risk

- Embolic stroke risk ≈5%/year (100,000 AF strokes/year)
- Large, debilitating strokes (31% fatal, 39% mod-severe neurologic deficit)
- Not homogeneous clinical models for risk stratification CHADS₂ (6) vs CHA₂DS₂VASc (9)

Recognizes importance of 1. Vascular risk factors 2. Greater sensitivity to age

- Significant limitations
 - Poor predictive value (c-statistic 0.6-0.7)
 - Changes over time: 12-year follow-up in patients with "lone" AF (c-statistic 0.5)
 - Anatomic factors not considered

Heart Disease Stroke Update: Circulation, 2009; Wolf: Stroke, 1991; Fisher: Geriatrics, 1979; Lip: Stroke, 2010

Emergency Hospitalizations Adverse Drug Events

- National Electronic Injury Surveillance System Cooperative Adverse Drug Events Surveillance Project
- Estimated 99,628 emergency hospitalizations (95% CI 55,531 to 143,724) for adverse events each year from 2007-2009 for adults ≥65 years of age

National Estimates of Meds Commonly Implicated in Emergency Hospitalizations for Adverse Drug Events in Older U.S. Adults, 2007-2009

Medication	Annual National Estimate of Hospitalizations (N=99,628)		Proportion of ED Visits Resulting in Hospitalization
	#	% (95% CI)	%
Most commonly implicated medications			
Warfarin	33,171	33.3 (28.0-38.5)	46.2
Insulins	13,854	13.9 (9.8-18.0)	40.6
Oral antiplatelet agents	13,263	13.3 (7.5-19.1)	41.5

Warfarin Problematic

NOACS versus Warfarin Meta-Analysis

- Prespecified meta-analysis of 71,683 patients
 RE-LY, ROCKET AF, ARISTOTLE, ENGAGE, AF-TIMI 48
- Main outcomes
 - Stroke and systemic embolism
 - Ischemic stroke, hemorrhagic stroke
 - All cause mortality, MI
 - Major bleeding, ICH, GI bleeding

Ruff et al: Lancet 383:955-62, 2014

NOACS versus Warfarin

• NOACS:

Significant ↓ in all cause mortality
RR 0.90, 95% CI 0.85-0.95
Significant ↓ in ICH
RR 0.48, 95% CI 0.39-0.59
Significant ↑ in GI bleeding
RR 1.25, 95% CI 1.01-1.55

MAYO CLINIC Ruff et al: Lancet 383:955-62, 2014

n TAluff, Rabert P Gropilana, Eugrne Unavroyold, Elsaine II Hoffman, Naveen Decreakovella, Michael D'Exokovella, A Jobo Canton

Conclusions: This meta-analysis is the first to include data for all four new oral anticoagulants studied in the pivotal phase 3 clinical trials for stroke prevention or systemic embolic events in patients with atrial fibrillation. New oral anticoagulants had a favorable risk-benefit profile, with significant reductions in stroke, intracranial hemorrhage, and mortality, and with similar major bleeding as for warfarin, but increased gastrointestinal bleeding. The relative efficacy and safety of new oral anticoagulants was consistent across a wide range of patients. Our findings offer clinicians a more comprehensive picture of the new oral anticoagulants as a therapeutic option to reduce the risk of stroke in this patient population.

> 0-34-1-27; p=0-74), and a more favourable hireding profile (0-65, 0-43-1-00; p=0-05), hut significantly more Candialastic King Alberton ischaemic strukes (1-28, 1-02-1-60; p=0-045).

re lepis interpretation This meta-analysis is the first to include data for all four new oral anticoagulants studied in the pivotal phase 3 clinical trials for stroke prevention or systemic embolic events in patients with atrial fibrillation. New oral anticoagulants had a favourable risk-benefit profile, with significant reductions in stroke, intracranial haemorrhage, and mortality, and with similar major bleeding as for warfarin, but increased gastminiestinal bleeding. The relative efficacy and safety of new oral anticoagulants was consistent across a wide range of patients. Our findings offer on the Physics Officers clinicians a more comprehensive picture of the new oral anticoagulants as a therapeutic option to reduce the risk of HARADING COM stroke in this patient population. partness.org

Funding None

Introduction

Atrial fibrillation, the most common mustained cardiac arrhythmia, predisposes patients to an increased risk of the systematic underuse of vitamins K antagonists for embolic stroke and has a higher mortality than sinua stroke prevention." rhythm." Until 2009, warfarin and other vitamin K antagonists were the only class of oral anticoagulants that dose-dependently inhibit thrombin or activated available. Although these drugs are highly effective in factor X (factor Xa) and offer potential advantages over prevention of thromboembolism, their use is limited by a narrow therapentic index that necessitates frequent action, absence of an effect of dietary vitamin K intake monitoring and dose adjustments resulting in substantial

risk and inconvenience. This limitation has translated into poor patient adherence and probably contributes to

Several new oral anticoagulants have been developed vitamin K antagonists, such as rapid onast and offset of on their activity, and fewer drug interactions. The

Ruff et al: Lancet 383:955, 2014

Novel Oral Anticoagulants Discontinuation and Bleeding Rates

Treatment	Discontinuation rate in study (%)	Major bleeding (rate/year) (%)
Dabigatran ¹ (150 mg)	21	3.1
Rivaroxaban ²	24	3.6
Apixaban ³	22	2.1

- 1. Connolly SJ: N Engl J Med, 2009
- 2. Patel MR: N Engl J Med, 2011
- 3. Granger CB: N Engl J Med, 2011

ENGAGE AF-TIMI 48 Major Bleeding

Warfarin Cessation Rates High in WATCHMAN Patients

	PROTECT AF (n=408)		CAP (n=534	-)	PREVAIL (n=253)	
Visit	n/N	%	n/N	%	n/N	%
45-day	348/401	86.8	507/529	95.8	227/246	92.2
6-month	355/385	92.2	493/500	98.6	235/239	98.3
12-month	345/370	93.2	455/472	96.4	141/142	99.3

Long-term PROTECT AF Results

	Mean follow-	Event rate			Posterior probabilities	
	up (years)	WATCHMAN	Control	Rate ratio	Non- inferiority	Superiority
900 pt-yr	1.3	3.4	5.0	0.68	0.998	0.837
1,588 pt-yr	2.3	3.0	4.3	0.71	>0.999	0.846
2,621 pt-yr	3.8	2.3	3.8	0.60	>0.999	0.960

Composite primary efficacy

- All stroke
- Cardiovascular / unexplained death
- Systemic embolism

Safety Events: PROTECT AF, CAP, PREVAIL

mayo clinic **VV**

ASAP Trial Anticoagulation Contraindicated

Expected and Observed Stroke Rates (per 100 patient-years)

Observed rate of ischemic stroke represents a 77% reduction from the expected event rate

LAA Occlusion It's not for everyone

Stroke and Atrial Fibrillation Alternative to Warfarin or NOACS

MAYO

- Patients who could be treated with warfarin/NOACS
- Patients who choose not to be treated with warfarin/NOACS
- Contraindications to warfarin/NOACS

NOACS vs Warfarin Stroke or Systemic Embolic Events

	NOAC events	Warfarin events		RR (95% CI)	P
RE-LY [*]	134 (6,076)	1,99 (6,022)		0.66 (0.53-0.82)	0.0001
ROCKET AF [†]	269 (7,081)	306 (7,090)		0.88 (0.75-1.03)	0.12
ARISTOTLE [‡]	212 (9,120)	265 (9,081)		0.80 (0.67-0.95)	0.012
ENGAGE AF- TIMI 48**	296 (7,035)	337 (7,036)		0.88 (0.75-1.02)	0.10
Combined (random)	911 (29,312)	1,107 (29,229)		0.81 (0.73-0.91)	<0.0001
		0.	5 1	.0 2.0	
		←	Favors NOAC	Favors warfarin	

*Dabigatran 150 mg twice daily; [†]Rivaroxaban 20 mg once daily; [‡]Apixaban 5 mg twice daily **Edoxaban 60 mg once daily; Ruff et al: Lancet 383:955, 2014

NOACS vs Warfarin Secondary Efficacy and Safety Outcomes

	Pooled NOAC events	Pooled Warfarin events			RR (95% CI)	P
Efficacy						
lschemic stroke	665 (29,292)	724 (29,221)		-0-	0.92 (0.83-1.02)	0.10
Hemorrhagic stroke	130 (29,292)	263 (29,221)			0.49 (0.38-0.64)	<0.0001
MI	413 (29,292)	432 (29,221)			- 0.97 (0.78-1.20)	0.77
All-cause mortality	2,022 (29,292)	2,245 (29,221)			0.90 (0.85-0.95)	0.0003
Safety						
Intracranial hemorrhage	204 (29,287)	425 (29,211)	-0-		0.48 (0.39-0.59)	<0.0001
GI bleeding	751 (29,287)	591 (29,211)		-		0.043
		0.2 Fa	0.5 vors NOAC	1.0 Favor:) 2.0 s warfarin	

Ruff et al: Lancet 383:955, 2014

NOACS vs Warfarin Major Bleeding

*Dabigatran 150 mg twice daily; [†]Rivaroxaban 20 mg once daily; [‡]Apixaban 5 mg twice daily **Edoxaban 60 mg once daily; Ruff et al: Lancet 383:955, 2014

NOACS vs Warfarin Stroke or Systemic Embolic Events Subgroups

	Pooled NOAC (events)	Pooled Warfarin (events)		RR (95% CI)	P
Age (years)					
<75	496 (8,073)	578 (18,004)		0.85 (0.73-0.99)	0.38
≥75	415 (11,188)	532 (11,095)		0.78 (0.68-0.88)	
Sex					
Female	382 (10,941)	478 (10,839)		0.78 (0.65-0.94)	0.52
Male	531 (18,371)	634 (18,390)	-0-	0.84 (0.75-0.94)	
Diabetes					
No	622 (20,216)	755 (20,238)	-0-	0.83 (0.74-0.93)	0.73
Yes	287 (9,096)	356 (8,990)		0.80 (0.69-0.93)	
Previous stroke or TIA					
No	483 (20,699)	615 (20,637)		0.78 (0.66-0.91)	0.30
Yes	428 (8,663)	495 (8,635)		0.86 (0.76-0.98)	
Creatinine clearance (mL/m	in)				
<50	249 (5,539)	311 (5,503)		0.79 (0.65-0.96)	0.12
50-80	405 (13,055)	546 (13,155)		0.75 (0.66-0.85)	
>80	256 (10,626)	255 (10,533)	o	0.98 (0.79-1.22)	
CHADS₂ score					
0-1	69 (5,058)	90 (4,942) —		0.75 (0.54-1.04)	0.76
2	247 (9,563)	290 (9,757)		0.86 (0.70-1.05)	
3-6	596 (14,690)	733 (14,528)	-0	0.80 (0.72-0.89)	
VKA status					
Naïve	386 (13,789)	513 (13,834)	-0	0.75 (0.66-0.86)	0.31
Experienced	522 (15,514)	597 (15,395)	_	0.85 (0.70-1.03)	
Center-based TTR					
<66%	509 (16,219)	653 (16,297)		0.77 (0.65-0.92)	0.60
≥66%	313 (12,642)	392 (12,904)		0.82 (0.71-0.95)	
			i		
		0.5	1.0	2.0	
		Eavo	rs NOAC Eave	ors warfarin	

NOACS vs Warfarin Major Bleeding Subgroups

	Pooled NOAC (events)	Pooled Warfarin (events)		RR (95% CI)	P
Age (years)					
<75	1,317 (18,460)	1,543 (18,396)	-0	0.79 (0.67-0.94)	0.28
≥75	1,328 (10,771)	1,346 (10,686)		- 0.93 (0.74-1.17)	
Sex					
Female	751 (8,682)	920 (8,645)	0	0.75 (0.58-0.97)	0.29
Male	1,495 (14,530)	1,548 (14,544)		- 0.90 (0.72-1.12)	
Diabetes					
No	481 (11,278)	678 (11,294)		0.71 (0.54-0.93)	0.12
Yes	872 (7,691)	937 (7,583)	-0-	0.90 (0.78-1.04)	
Previous stroke or TIA					
Νο	1,070 (20,638)	1,280 (20,619)	-0-	0.85 (0.72-1.01)	0.70
Yes	495 (8,669)	553 (8,600)	-0-	0.89 (0.77-1.02)	
Creatinine clearance (mL/	min)				
<50	514 (4,376)	620 (4,346)	0	0.74 (0.52-1.05)	0.57
50-80	1,104 (10,139)	1,174 (10,228)		0.91 (0.76-1.08)	
>80	625 (8,681)	672 (8,595)		- 0.85 (0.66-1.10)	
CHADS₂ score					
0-1	76 (3,090)	126 (3,078)		0.60 (0.45-0.80)	0.09
2	530 (7,403)	597 (7,498)		0.88 (0.65-1.20)	
3-6	1,640 (12,716)	1,745 (12,611)		0.86 (0.71-1.04)	
VKA status					
Naïve	656 (12,776)	786 (12,820)	-0-	0.84 (0.76-0.93)	0.78
Experienced	909 (16,446)	1,040 (16,265)		0.87 (0.70-1.08)	
Center-based TTR					
<66%	484 (10,972)	702 (11,021)	_0_	0.69 (0.59-0.81)	0.022
≥66%	668 (10,944)	736 (11,049)		- 0.93 (0.76-1.13)	
			l İ	I	
		0.2	0.5 1.	0 2.0	
		Favors	NOAC Fav	ors warfarin	
		←		<u> </u>	
				Ruff et al: Lancet 383	955 2014

Is LAA Occlusion Really an Alternative to Lifelong Anticoagulation?

David R. Holmes, Jr., M.D. Mayo Clinic, Rochester ACC 2014 Washington, DC March 2014

Presenter Disclosure Information

David R. Holmes, Jr., M.D.

"Is LAA Occlusion Really an Alternative to Lifelong Anticoagulation?"

The following relationships exist related to this presentation:

Both Mayo Clinic and I have a financial interest in technology related to this research. That technology has been licensed to Boston Scientific.

What Will be the Role of Occlusion

Non-Valvular AF Patients

- AF increases the risk of stroke 4 5 times¹
 - Highest risk: older patients and those with prior stroke or TIA²
 - AF is responsible for 15 20% of all strokes, particularly in the elderly³
- Typically >70 years old⁴
- Taking multiple medications⁵

- 1. Wolf PA: Stroke, 1991
- 2. Gage BF: JAMA, 2001
- 3. Go AS: Am J Geriatr Cardiol, 2005
- 4. Lloyd-Jones D: Circulation, 2010
- 5. Hayes BD: Clin Geriatric Med, 2007

Stroke in AF Patients

- Greater disability compared to non-AF related stroke
 - Larger infarcts¹
 - More severe hemorrhagic transformation²
- High recurrence rate of stroke³
- Higher mortality⁴

- 1. Jorgensen HS: Stroke, 1996
- 2. Tu HT: Int J Stroke, 2013
- 3. Penado S: Am J Med, 2003
- 4. McGrath ER: Neurology, 2013

Significant Undertreatment

Especially those at high risk

MAYO CLINIC

Levy: Circulation, 1999; Baker: J Man Care Pharm, 2009; Samsa: Arch Int Med, 2000; Reynolds: Am J Cardiol, 2006

Important Drug Warning ELIQUIS (apixaban) tablets

Subject (Dec. 2013)

 Discontinuing ELIQUIS without introducing an adequate alternative anticoagulant places nonvalvular atrial fibrillation patients at an increased risk of thrombotic events, including stroke

Disappearing LAA Thrombus Resulting in Stroke

Totality of Data Support Safety and Efficacy of WATCHMAN

Implant Success Across Trials

PROTECT AF: Long-Term Results (2,621 Patient-Years of Follow-Up)

	Event rate (per 100 pt-yr)			Posterior probabilities	
	WATCHMAN n=463	Control n=244	Rate ratio (95% Crl)	Non- inferiority	Superiority
Primary efficacy	2.3	3.8	0.60 (0.41, 1.05)	>0.999	0.960
Stroke (all)	1.5	2.2	0.68 (0.42, 1.37)	0.999	0.825
Ischemic	1.4	1.1	1.26 (0.72, 3.28)	0.779	0.147
Hemorrhagic	0.2	1.1	0.15 (0.03, 0.49)	0.999	0.999
Systemic Embolism	0.2	0.0	n/a	n/a	n/a
Death (CV & unexplained)	1.0	2.4	0.40 (0.23, 0.82)	>0.999	0.995
MAYO CLINIC	AIL				
Long Term PROTECT AF All-Cause Mortality

PAF

PREVAIL

CAP

PROTECT AF: Timing of Safety Events Differ by Arm

Trends in Key Procedural Safety Events Across Trials

MAYO CLINIC * Overall embolization rate across studies is 0.5%

PROTECT

CAP

"Nancy always had thick ankles, but no one really noticed."

WATCHMAN Clinical History Over 2,000 Patients With 4,800 Patient Years Follow-Up

¹Reddy et al: HRS 2013; ²Reddy et al: Circulation 123:417, 2011; ³Reddy et al: JACC. 2013; In Press; ⁴Holmes et al: CIT 2013; in the U.S., WATCHMAN is an investigational device, limited by applicable law to investigational use only and not available for sale; CE Mark 2005

LAA Occlusion It's not for everyone

 Unclear balance even with best clinical trials available/heterogeneous/difficult to apply to specific patient

CHA ₂ DS ₂ VASc	Stroke (%)		Bleed (%)	HAS-BLED
Low $ egin{bmatrix} 0 egin{bma$	0.0	?,	0.9	0
Mod -{ 1	1.3	?	3.4	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ Mod
2	2.2		4.1	2]
High $\stackrel{3}{\prec}$	3.2	?	5.8	3
4	4.0		8.9	4 ≻ High
5	6.7		9.1	5 _

Stroke Prophylaxis

- Cornerstone of therapy: OAC with warfarin
 - 60-70% risk reduction vs placebo
 - 30-40% risk reduction vs antiplatelet Rx/ASA
- Antiplatelet therapy: 22% risk reduction vs placebo
- ACTIVE W: Warfarin vs DAPT; 42% RRR
- ASA only: 19% risk reduction vs placebo (P=NS)
- Older patients (>65): Absolute benefit of OAC increases while effect of ASA declines

Warfarin "preferred therapy"

Hart: Ann Int Med, 2007 Connoly: Lancet, 2006

Warfarin Remains Standard of Care for Stroke Prevention in AF

- 50% of patients indicated for warfarin do not receive it¹
- Reasons for not receiving warfarin range from patient preference to history of hemorrhage
- As many as 40% of AF patients have relative or absolute contraindications to warfarin therapy²
- Contraindicated patients are often treated with aspirin which has a lower risk of bleeding but also lower efficacy in preventing stroke

1.Patel, et al. Left atrial appendage exclusion for stroke prevention in atrial fibrillation. Cardiol Res Pract. 2012;2012:610827. 2.Brass LM, et al. Warfarin use among patients with atrial fibrillation. Stroke. 1997;28:2382-9.

Patient/Family Perspective on Bleeding

- "Major bleed": Death, 2 unit Tx, >20 g/dL ↓ HCT or bleeding involving a critical extracranial anatomical site (ICH = stroke, not bleed)
 - Sure, but what about "meaningful bleeds"
 - Clinically relevant, nonmajor bleeding
 - "minor bleeding"
- 60% of patients at "moderate risk" (>3%) of "major bleed"
 - Sure, but what is risk over 10 or 20 years?
- 26% of patients ≥80 stop at 1 year
 - 81% because of perceived safety issues; not major bleeding

Other Warfarin Issues

- Drug-drug interactions
 - Challenging in elderly patient with frequent changes in concomitant medications (antibiotics/antiarrhythmics)
- Pharmacokinetic challenges (slow onset/offset)
 - Periprocedural challenges (Vit K, FFP)
 - Lovenox/heparin bridging for interruptions in therapy
- QOL
 - Frequent INR checks
 - Food-drug interactions
- Genetic variability

Risk of Triple Therapy

- AF linked to increased likelihood of vascular disease → ACS
- 82,000 patients follow-up 2.6 years
 - 3.7-fold increased risk triple therapy vs warfarin
 - 11.4% fatal or nonfatal major bleeds
 - OAC + DAPT 15.7%/patient-year
 - OAC + clopidogrel only 13.9%/patient-year

Antithrombotics vs Warfarin in Nonvalvular Atrial Fibrillation

	RELY	ROCKET AF	ARISTOTLE	ACTIVE W
Intervention	Dab 110 mg bid or 150 mg bid	Rivar 20 mg once/day	Apix 5 mg bid	Plavix 75 mg/day + aspirin 75-100 mg/day
# Pts.	18,113	14,264	18,201	6.706
Primary outcome	CVA/Emb	CVA/Emb	CVA/Emb	CVA, Emb, MI or CVD
F/U (yrs, median)	2.0	1.9	1.8	1.3
Age (yrs, median)	71.5	73	70	70
CHADS ₂ score (mean)	2.1	3.5	2.1	2.0

Danelich et al: Pharmacotherapy 33:422-446, 2013

Antithrombotics vs Warfarin in Nonvalvular Atrial Fibrillation

Efficacy Results	RELY	ROCKET AF	ARISTOTLE	ACTIVE W
Primary outcome	110 mg: 1.53 vs 1.69 (p<0.001 NINF), p=0.34 (superior) 150 mg; 1.11 vs 1.69 (p<0.001 NINF)	Per protocol: 1.7 vs 2.2 (p<0.001 for NINF), as treated: 1.7 vs 2.2 (p=0.02 for superior), Intent-to-treat: 2.1 vs 2.4 (p<0.001 for NINF; p=0.12 for superior)	Intent-to-treat: 1.27 vs 1.60 (p=0.01 for superior)	Intent-to-treat: 5.60 vs 3.93 (p=0.0003 for superior)
Ischemic CVA	110 mg: 1.34 vs 1.2 (p=0.35) 150 mg: 0.92 vs 1.20 (p=0.03)	1.34 vs 1.42 (p=0.581)	1.19 vs 1.51 (p=0.01)	2.15 vs 1.00 (p<0.0001)
Hemorrhagic CVA	110 mg: 0.12 vs 0.38 (p<0.001) 150 mg: 0.10 vs 0.38 (p<0.001)	0.26 vs 0.44 (p=0.024)	0.24 vs 0.47 (p<0.001)	1.12 vs 0.36 (p=0.036)
INR TTR, % (mean)	64	55	66	64
		Danelich e	t al: Pharmacotherapy	33-422-446, 2013

Antithrombotics vs Warfarin in Nonvalvular Atrial Fibrillation

Safety Results	RELY	ROCKET AF	ARISTOTLE	ACTIVE W
Major bleeding	110 mg: 2.71 vs 3.36 (p=0.003) 150 mg: 3.11 vs 3.36 (p=0.31)	3.6 vs 3.4 (p=0.58)	2.13 vs 3.09 (p<0.001)	2.42 vs 2.21 (p=0.53)
Intracranial hemorrhage	110 mg: 0.23 vs 0.74 (p<0.001) 150 mg: 0.30 vs 0.74 (p<0.001)	0.5 vs 0.7 (p=0.02)	0.33 vs 0.80 (p<0.001)	0.005 vs 0.003 (p=0.08)
GI bleeding	110 mg: 1.12 vs 1.02 (p=0.43) 150 mg: 1.51 vs 1.02 (p<0.001)	3.2 vs 2.2 (p<0.001)	0.76 vs 0.86 (p=0.37)	Not reported

Background Meta Analysis

- 44,733 patients enrolled in 4 trials
 PETRO, RE-LY, ROCKET-AF, ARISTOTLE
- "In general the composite of stroke or systemic emboli and any stroke were significantly reduced with new oral AC versus warfarin. Significant heterogeneity was seen with any stroke, major bleed, hemorrhage stroke and GI bleed."

Baker WL et al: Circ Cardiovasc Qual Outcomes 5:711-19, 2012

Safety of Anticoagulant Therapy Major Bleed

			Study Name	Events /	<u>Fotal</u>		Risk Ratio	and 99% CI	
Risk ratio	Lower limit	Upper limit		New Agents	Warfarin	10		S	
0.775	0.561	1.070	PETRO, 2007	0 / 100	0/70	<	1		->
0.928	0.695	1.240	RE-LY, 2009	375/6076	397 / 6022				
0.922	0.698	1 217	ROCKET-AF, 2011	395/7111	386/7125		·		
0.922	0.742	1.044	ARISTOTLE, 2011	327 / 9088	462/9052				
0.000	0.042	1.044	TOTAL	1097 / 22375	1245 / 22269	10	<	\geq	3. I
			p = 0.23 $I^2 = 80.6\%$			0.5		1	2
			Egger $p = 0.98$				Favors New Agents	Favors Warfarin	

Baker WL et al: Circ Cardiovasc Qual Outcomes 5:711-19, 2012

D2012 MFMER | slide-56

Major Bleeding ISTH Definition

Inadequate VKA Treatment for AF

©2013 MFMER | 3256439-59

Patient/Family Perspective on Bleeding

- "Major bleed": Death, 2 unit Tx, >20 g/dL ↓ HCT or bleeding involving a critical extracranial anatomical site (ICH = stroke, not bleed)
 - Sure, but what about "meaningful bleeds"
 - Clinically relevant, nonmajor bleeding
 - "minor bleeding"
- 60% of patients at "moderate risk" (>3%) of "major bleed"
 - Sure, but what is risk over 10 or 20 years?
- 26% of patients ≥80 stop at 1 year
 - 81% because of perceived safety issues; not major bleeding

What will this Look Like in 2015? Adequacy of Anticoagulation in Patients with AF in Primary Care Practice

Samsa et al: Arch Int Med 160:967, 2000

©2013 MFMER | 3256439-61

ROCKET AF

Patel MR et al: NEJM Aug 10, 2011

MAYO CLINIC

元

Other Warfarin Issues

- Drug-drug interactions
 - Challenging in elderly patient with frequent changes in concomitant medications (antibiotics/antiarrhythmics)
- Pharmacokinetic challenges (slow onset/offset)
 - Periprocedural challenges (Vit K, FFP)
 - Lovenox/heparin bridging for interruptions in therapy
- QOL
 - Frequent INR checks
 - Food-drug interactions
- Genetic variability

New medicines and new methods of cure always work miracles for awhile

William Heberden 1710-1801

ESC Guidelines for Management of AF 2012 Focused Update

Recommendations for LAA closure/occlusion/excision

Recommendation	Class	Level
Interventional, percutaneous	llb	В
LAA closure may be considered		
risk and contra-indications for		
long-term OAC		

RELY-ABLE Study

- Longer-term follow-up of RELY trial
- Only 48% of patients were still on the randomly assigned dabigatran
- During the next 28 month visit follow-up 13.8-14.6% discontinued the Dabigatran
- Major bleeding occurred in 2.99-3.74%

Connolly et al: Circ 128:237-243, 2013

Of interest, in terms of GI bleeding, not all studies documented less bleeding compared with warfarin. There was increased GI bleeding with dabigatran and rivaroxaban in RELY and ROCKET AF but not with apixaban in ARISTOTLE.

An analysis of the cost effectiveness of left atrial appendage closure for the prevention of stroke in patients with atrial fibrillation and absolute contraindications to warfarin therapy

David R. Holmes Jr. EuroPCR 2013

An analysis of the cost effectiveness of left atrial appendage closure for the prevention of stroke in patients with atrial fibrillation and absolute contraindications to warfarin therapy

Vivek Y Reddy¹, Ron Akehurst², Shannon Armstrong³, Stacey L Amorosi⁴, Nic Brereton⁵, David R Holmes⁶

¹Mt. Sinai School of Medicine, New York, NY, USA; ²University of Sheffield, Sheffield, UK; ³GfK Bridgehead, Wayland, MA, USA; ⁴Boston Scientific, Natick, MA, USA; ⁵BresMed, Sheffield, UK; ⁶Mayo Clinic, Rochester, MN, USA

Disclosure Information

The following relationships exist related to this presentation:

David R. Holmes:

Both Mayo Clinic and I have a financial interest in technology related to this research. That technology has been licensed to Atritech.

Stacey L Amorosi

Paid employee of Boston Scientific

All other authors

Paid consultants of Boston Scientific

This research was funded by Boston Scientific

Objective

 This analysis sought to estimate the cost effectiveness of treating warfarin-ineligible patients with left atrial appendage closure (LAAC) as compared to standard aspirin therapy for stroke prevention in atrial fibrillation (AF)

Stroke in AF

20% of all strokes occur in people with AF¹

MAYO

TLINIC

- AF-associated strokes affect a larger area of the brain than non-AF stroke², leading to a 70% chance of death or permanent disability³
- 91% of stroke in AF is caused by blood clots which have formed in the left atrial appendage⁴

How Big is the Problem?

- AF is the most common arrhythmia
 - Affects more than 3 million individuals in the U.S.
 - Projected to increase to 16 million by 2050
- Lifetime risk in men and women >40 is 1 in 4
- Patients with AF have a 5-fold higher risk of stroke
 - Over 87% of strokes are thromboembolic
 - >90% of thrombus originates in the left atrial appendage
- Stroke is the #1 cause of long-term disability and the third leading cause of death in patients with AF

ENGAGE AF-TIMI 48 Edoxaban vs Warfarin

- Multicenter RCT of 21,105 patients with AF
 - CHADS₂ 2.8±1.0
- Randomization
 - Warfarin
 - High dose Edoxaban
 - Low dose Edoxaban
- Non-inferiority design
- Primary efficacy endpoint
 - Stroke/systemic embolism
- Primary safety endpoint
 - Major bleeding

Guigliano et al: N Engl J Med 369:2093-104, 2013

2013 MFMER | 3256439-76

ENGAGE AF-TIMI 48

	Annualized Primary Endpoint
Warfarin (TTR 68.4%)	1.50%
High dose Edoxaban	1.18%
Low dose Edoxaban	1.61%
	Annualized Major Bleeding
Warfarin	3.43%
Warfarin High dose Edoxaban	3.43% 2.75%

2013 MFMER | 3256439-7

ENGAGE AF-TIMI 48 Exclusions

- AF from reversible disorder
- CrCL <30 ml/min
- High risk bleeding
- DAPT
- ACS, coronary revasc or stroke <30 days

2013 MFMER | 3256439-78

ABSTRACT

Conclusions – Both once-daily regimens of edoxaban were noninferior to warfarin with respect to the prevention of stroke or systemic embolism and were associated with significantly lower rates of bleeding and death from cardiovascular causes.

> dose edoxahan (hazard ratio, 0.80; 95% CI, 0.71 to 0.91; Pc0.001) and 1.61% with low-dose edoxaban (hazard ratio, 0.47; 95% CI, 0.41 to 0.55; P<0.001). The corresponding annualized rates of death from cardiovascular causes were 3.17% versus 2.74% (hazard ratio, 0.86; 95% CI, 0.77 to 0.97; P=0.01), and 2.71% (hazard ratio, 0.85; 95% CI, 0.76 to 0.96; P=0.008), and the corresponding rates of the key secondary end point (a composite of stroke, systemic embolism, or death from cardiovascular causes) were 4.43% versus 3.85% (hazard ratio, 0.87; 95% CI, 0.78 to 0.96; P=0.005), and 4.23% (hazard ratio, 0.55; 95% CI, 0.86 to 1.05; P=0.32).

CONCLUSIONS

Both once-daily regimens of edoxaban were noninferior to warfarin with respect to the prevention of stroke or systemic embolism and were associated with significantly lower rates of bleeding and death from cardiovascular causes. (Funded by Daiichi Sankyo Pharma Development; ENGAGE AF-TIMI 48 ClinicalTrials.gov number, NCT00781391.)

M ENCY] MED 303:33 WEIM ORD MONEMBER 33, 30

with Factor Xa Next Generation in Atrial Fibrillation-Thrombolysis in Myscardial Infarction 48 (ENGAGE AF-TIMI 48) team are fisted in the Supplementary Appendix, available at NEJM.org.

This article was published on November 19, 2013, at NEJM.org.

N Engl J Med 2013;369(2993-104.) DCI: 10.1056/NEJMos1310907 Cayinght © 2011 Meconhisetts Medical Scores

2093

ENGAGE AF-TIMI 48 Stroke or Systemic Embolic Event

Primary Endpoint Efficacy Endpoints

	Warfarin	(n=7,036	High edoxabar	-dose 1 (n=7,035)	High-dose edoxaban vs warfarin		High-dose edoxaban vs Low-dose edoxaban vs (n=7,0		Low-dose edoxa warfarin	ban vs
End Point	Pt with event (no.)	Patients per yr (%)	Pt with event (no.)	Patients per yr (%)	HR (95% CI)	Р	Pt with event (no.)	Patients per yr (%)	HR (95% CI)	Р
Primary end point										
Modified intention- to-treat population in treatment period	232	1.50	182	1.18	0.79 (0.63–0.99)	<0.001	253	1.61	1.07 (0.87–1.31)	0.005
Intention-to-treat population in the overall study period	337	1.80	296	1.57	0.87 (0.73–1.04)	0.08	383	2.04	1.13 (0.96–1.34)	0.10
Stroke	317	1.69	281	1.49	0.88 (0.75–1.03)	0.11	360	1.91	1.13 (0.97–1.31)	0.12
Hemorrhagic	90	0.47	49	0.26	0.54 (0.38–0.77)	<0.001	30	0.16	0.33 (0.22–0.50)	<0.001
Ischemic	235	1.25	236	1.25	1.00 (0.83–1.19)	0.97	333	1.77	1.41 (1.19–1.67)	<0.001
Nondisabling and nonfatal	190	1.01	154	0.81	0.80 (0.65–0.99)	0.044	214	1.13	1.12 (0.92–1.36)	0.26
Disabling or fatal	135	0.71	132	0.69	0.97 (0.76–1.23)	0.81	152	0.80	1.11 (0.89–1.40)	0.36
Fatal	86	0.45	80	0.42	0.92 (0.68–1.25)	0.61	73	0.38	0.84 (0.61–1.15)	0.27
Systemic embolic event	23	0.12	15	0.08	0.65 (0.34–1.24)	0.19	29	0.15	1.24 (0.72–2.15)	0.43

Giugliano et al: NEJM 369(22):2093, 2013

What Have We Learned

- Scope of AF and stroke
- Challenges of anticoagulation therapy including NOACS
- Issues of trial design
 - Invasive devices versus oral medications
- Regulatory pathways for new devices
- Long-term efficacy Watchman
 - Patients eligible for AC
 - Patients not eligible for AC
- Safety
 - New operators versus inexperienced operators

Total picture

Non-Valvular AF Patients

- AF increases the risk of stroke 4 5 times¹
 - Highest risk: older patients and those with prior stroke or TIA²
 - AF is responsible for 15 20% of all strokes, particularly in the elderly³
- Typically >70 years old⁴
- Taking multiple medications⁵

- 1. Wolf PA: Stroke, 1991
- 2. Gage BF: JAMA, 2001
- 3. Go AS: Am J Geriatr Cardiol, 2005
- 4. Lloyd-Jones D: Circulation, 2010
- 5. Hayes BD: Clin Geriatric Med, 2007

Stroke in AF Patients

- Greater disability compared to non-AF related stroke
 - Larger infarcts¹
 - More severe hemorrhagic transformation²
- High recurrence rate of stroke³
- Higher mortality⁴

- 1. Jorgensen HS: Stroke, 1996
- 2. Tu HT: Int J Stroke, 2013
- 3. Penado S: Am J Med, 2003
- 4. McGrath ER: Neurology, 2013

Guidelines for Anticoagulation Use Based on CHADS₂ Scores

CHADS2 score	Recommendation
0	Aspirin or no therapy
1	Anticoagulation or aspirin
≥ 2	Anticoagulation

ACC/AHA/ESC 2006 Guidelines for the Management of Patients with Atrial Fibrillation

Factors Increasing Stroke Risk in Patients with CHADS₂ Score of 1

Warfarin therapy recommended for patients with CHADS₂ score of 1 if any of the following apply

- Female and age ≥75
- Baseline LVEF <35%
- Age 65-74 and diabetes or coronary artery disease
- Age ≥65 and has documented congestive heart failure

Fundamental Treatment Dilemma: Stroke and Bleeding Risks Overlap

CHADS₂ Risk Criteria

HAS-BLED

Risk Factor	Score	Condition	Points
Prior stroke or TIA	2	Hypertension	1
Age >75	1	Abnormal liver and	1 or 2
Hypertension	1	(1 point each)	
Diabetes mellitus	1	Stroke	1
Heart failure	1	Bleeding	1

CAP: Bleeding Risks Based on HAS-BLED

©2013 MFMER | 3318103-88

PROTECT AF: Quality of Life

* P<0.005 Alli O: JACC, 2013

Implant Success Across Trials

Warfarin Cessation Rates High in WATCHMAN Patients

	PROTEC (n=408	T AF B)	CAP (n=534	-)	PREVAIL (n=253)		
Visit	n/N	%	n/N	%	n/N	%	
45-day	348/401	86.8	507/529	95.8	227/246	92.2	
6-month	355/385	92.2	493/500	98.6	235/239	98.3	
12-month	345/370	93.2	455/472	96.4	141/142	99.3	

Long-Term PROTECT AF Results

	Mean	Mean Event Rate			Posterior Probabilities		
	up (years)	WATCHMAN	Control	Rate ratio	Non inferiority	Superiority	
900 pt-yr	1.3	3.4	5.0	0.68	0.998	0.837	

Composite primary efficacy

• All stroke

MAYO

- Cardiovascular / unexplained death
- Systemic embolism

Long-term PROTECT AF Results

	Mean follow-	Event r	ate		Pos proba	terior abilities
	up (years)	WATCHMAN	Control	Rate ratio	Non- inferiority	Superiority
900 pt-yr	1.3	3.4	5.0	0.68	0.998	0.837
1,588 pt-yr	2.3	3.0	4.3	0.71	>0.999	0.846
2,621 pt-yr	3.8	2.3	3.8	0.60	>0.999	0.960

MAYO CLINIC

PROTECT AF: Long-Term Efficacy Results (2,621 Patient-Years of Follow-Up)

	Event r (per 100	ate pt-yr)		Posterior probabilities	
	WATCHMAN n=463	Control n=244	Rate ratio (95% Crl)	Non- inferiority	Superiority
Primary efficacy	2.3	3.8	0.60 (0.41, 1.05)	>0.999	0.960
Stroke (all)	1.5	2.2	0.68 (0.42, 1.37)	0.999	0.825
Ischemic	1.4	1.1	1.26 (0.72, 3.28)	0.779	0.147
Hemorrhagic	0.2	1.1	0.15 (0.03, 0.49)	0.999	0.999
Systemic embolism	0.2	0.0	NA	NA	NA
Death (CV & unexplained)	1.0	2.4	0.40 (0.23, 0.82)	>0.999	0.995

MAYO CLINIC

PROTECT AF: Long-Term Results (2,621 Patient-Years of Follow-Up)

	Event r (per 100	Event rate (per 100 pt-yr)			Posterior probabilities		
	WATCHMAN n=463	Control n=244	Rate ratio (95% Crl)	Non- inferiority	Superiority		
Primary efficacy	2.3	3.8	0.60 (0.41, 1.05)	>0.999	0.960		
Stroke (all)	1.5	2.2	0.68 (0.42, 1.37)	0.999	0.825		
Ischemic	1.4	1.1	1.26 (0.72, 3.28)	0.779	0.147		
Hemorrhagic	0.2	1.1	0.15 (0.03, 0.49)	0.999	0.999		
Systemic Embolism	0.2	0.0	n/a	n/a	n/a		
Death (CV & unexplained)	1.0	2.4	0.40 (0.23, 0.82)	>0.999	0.995		
MAYO CLINIC	AIL						

Long Term PROTECT AF All-Cause Mortality

PAF

PREVAIL

CAP

Long-term PROTECT AF Primary Efficacy Endpoint: Hazard Ratios by Subgroup

PAF CAP PREVAIL

	WATCHMAN No	on-inferior 🗲 🗌	Interaction p-value
Sex	Females Males		0.10
Age	≥75 years <75 years		0.91
CHADS ₂	1 >1		0.19
AF Pattern	Paroxysmal Persistent Permanent		0.56
History of TIA/Stroke	Yes No		0.88
Prior Years on Warfarin	<1 ≥1		0.48
LVEF	≥ median < median		0.66
All Patients			
	0.01	0.1 1	10

Hazard Ratio (95% CI)

Safety Events: PROTECT AF, CAP, PREVAIL

PREVAIL Safety Assessment

- Included new operators and centers
- Safety primary endpoint: Safety events occurring in the peri-procedural period*
 - All-cause death, ischemic stroke, systemic embolism

0ľ

 Device or procedure related events requiring surgical or major endovascular intervention

MAYO

*Between randomization and within 7 days of procedure or by hospital discharge, whichever is later

Trends in Key Procedural Safety Events Across Trials

MAYO CLINIC

PROTECT

CAP

PREVAIL: Mechanism-of-Action Endpoint Results

MAYO

©2013 MFMER | 3318103-101

ASAP Trial

- Multicenter prospective registry
- 150 patients with nonvalvular atrial fibrillation and CHADS₂ ≥1, ineligible for warfarin
- Watchman Device without warfarin
- Primary endpoint of ischemic stroke, hemorrhagic stroke, systemic embolism and CV/unexplained death

Reddy V et al: JACC 2013 doi:10.1016/j.jacc.2013.03.035

2012 MFMER | slide-102

Results

Expected and Observed Stroke Rates (per 100 patient-years)

Observed rate of ischemic stroke represents a 77% reduction from the expected event rate

ASAP Trial Conclusions

 LAA closure with the Watchman device can be safely performed without a warfarin transition, and is a reasonable alternative to consider for patients at high risk for stroke but with contraindications to systemic oral anticoagulation.

Reddy V et al: JACC 2013 doi:10.1016/j.jacc.2013.03.035

©2012 MFMER | slide-104

Stroke and Atrial Fibrillation Alternative to Warfarin or NOACS

MAYO

- Patients who could be treated with warfarin/NOACS
- Patients who choose not to be treated with warfarin/NOACS
- Contraindications to warfarin/NOACS

XARELTO® DOSING SUMMARY

MAYO

©2012 MFMER | slide-106

Standard of Care to Prevent Strokes in AF Patients

- Warfarin
- Novel oral anticoagulants (NOACs)
 - Dabigatran
 - Rivaroxaban
 - Apixaban
 - Edoxaban
- All increase risk of bleeding

INR Control is Difficult With Warfarin Treatment and Impacts Risk

- 1. Glazer NL: Arch Intern Med, 2007
- 2. Shen AY: J Am Coll Cardiol, 2007
- 3. Go AS: JAMA, 2003

Stroke and Atrial Fibrillation Alternative to Warfarin or NOACS

MAYO

- Patients who could be treated with warfarin/NOACS
- Patients who choose not to be treated with warfarin/NOACS
- Contraindications to warfarin/NOACS

MAYO CLINIC "Nancy always had thick ankles, but no one really noticed."

Totality of Data Support Safety and Efficacy of WATCHMAN

 ~2000 clinical patients

 ~4900 patientyears of follow-up

 Approved in 55 countries

 ~ 5,000
 commercial implants

Anticoagulant Therapy Carries Risk of Intracerebral Hemorrhage

- More disabling and more often fatal than ischemic stroke¹
- Impacts physician prescribing behavior² and patient adherence to therapy³

- 1. Broderick J: Circulation, 2007
- 2. Hylek EM: Stroke, 2006
- 3. Ghate SR: Circulation, 2013

Novel Oral Anticoagulants Discontinuation and Bleeding Rates

Treatment	Discontinuation rate in study (%)	Major bleeding (rate/year) (%)
Dabigatran ¹ (150 mg)	21	3.1
Rivaroxaban ²	24	3.6
Apixaban ³	22	2.1

- 1. Connolly SJ: N Engl J Med, 2009
- 2. Patel MR: N Engl J Med, 2011
- 3. Granger CB: N Engl J Med, 2011

FDA Executive Summary: Primary Concerns

Patient Population

 Enrollment of CHADS₂=1 patients, for whom aspirin could have been used

Efficacy

- Concomitant use of clopidogrel therapy
 Safety
- Serious peri-procedural adverse events

Warfarin Time in Therapeutic Range (TTR) for Control Groups

Study	Warfarin Control Group Mean TTR (%)
PROTECT AF	70
PREVAIL	<mark>68</mark>
RE-LY ¹ (Dabigatran)	64
ARISTOTLE ² (Apixaban)	62
ROCKET AF ³ (Rivaroxaban)	55

- 1. Connolly SJ et al: NEJM, 2009
- 2. Granger CB et al: NEJM, 2011
- 3. Patel MR et al: NEJM, 2011

Trends in Key Procedural Safety Events Across Trials

PROTECT

CAP

Not all Patients are Candidates for Referral to WATCHMAN Therapy

Patients should not be referred if

- Patient is already doing well or is likely to do well on anticoagulation
- Upfront risk of implant outweighs long-term risk of excessive bleeding

Fundamental Treatment Dilemma: Stroke and Bleeding Risks Overlap

CHADS₂ Risk Criteria

HAS-BLED

Risk Factor	Score	Condition	Points
Prior stroke or TIA	2	Hypertension	1
Age >75	1	Abnormal liver and	1 or 2
Hypertension	1	(1 point each)	
Diabetes mellitus	1	Stroke	1
Heart failure	1	Bleeding	1

How Big is the Problem?

- AF is the most common arrhythmia
 - Affects more than 3 million individuals in the U.S.
 - Projected to increase to 16 million by 2050
- Lifetime risk in men and women >40 is 1 in 4
- Patients with AF have a 5-fold higher risk of stroke
 - Over 87% of strokes are thromboembolic
 - >90% of thrombus originates in the left atrial appendage
- Stroke is the #1 cause of long-term disability and the third leading cause of death in patients with AF

New OAC Strategies

- Underused
- Suboptimally applied
- Difficult pharmacology
- Inappropriately discontinued

Dabigatran Rivaroxaban Warfarin Apixaban Edoxaban

Bleeding concerns

Game changer?

Procedure Implant Success

Implant success defined as deployment and release of the device into the left atrial appendage

©2013 MFMER | 3265983-121

Warfarin Problematic

Antithrombotics vs Warfarin in Nonvalvular Atrial Fibrillation

	RELY	ROCKET AF	ARISTOTLE	ACTIVE W
Intervention	Dab 110 mg bid or 150 mg bid	Rivar 20 mg once/day	Apix 5 mg bid	Plavix 75 mg/day + aspirin 75-100 mg/day
# Pts.	18,113	14,264	18,201	6.706
Primary outcome	CVA/Emb	CVA/Emb	CVA/Emb	CVA, Emb, MI or CVD
F/U (yrs, median)	2.0	1.9	1.8	1.3
Age (yrs, median)	71.5	73	70	70
CHADS ₂ score (mean)	2.1	3.5	2.1	2.0

Danelich et al: Pharmacotherapy 33:422-446, 2013

Antithrombotics vs Warfarin in Nonvalvular Atrial Fibrillation

Efficacy Results	RELY	ROCKET AF	ARISTOTLE	ACTIVE W
Primary outcome	110 mg: 1.53 vs 1.69 (p<0.001 NINF), p=0.34 (superior) 150 mg; 1.11 vs 1.69 (p<0.001 NINF)	Per protocol: 1.7 vs 2.2 (p<0.001 for NINF), as treated: 1.7 vs 2.2 (p=0.02 for superior), Intent-to-treat: 2.1 vs 2.4 (p<0.001 for NINF; p=0.12 for superior)	Intent-to-treat: 1.27 vs 1.60 (p=0.01 for superior)	Intent-to-treat: 5.60 vs 3.93 (p=0.0003 for superior)
Ischemic CVA	110 mg: 1.34 vs 1.2 (p=0.35) 150 mg: 0.92 vs 1.20 (p=0.03)	1.34 vs 1.42 (p=0.581)	1.19 vs 1.51 (p=0.01)	2.15 vs 1.00 (p<0.0001)
Hemorrhagic CVA	110 mg: 0.12 vs 0.38 (p<0.001) 150 mg: 0.10 vs 0.38 (p<0.001)	0.26 vs 0.44 (p=0.024)	0.24 vs 0.47 (p<0.001)	1.12 vs 0.36 (p=0.036)
INR TTR, % (mean)	64	55	66	64
		Danelich e	t al· Pharmacotherany	33.422-446 2013

Antithrombotics vs Warfarin in Nonvalvular Atrial Fibrillation

Safety Results	RELY	ROCKET AF	ARISTOTLE	ACTIVE W
Major bleeding	110 mg: 2.71 vs 3.36 (p=0.003) 150 mg: 3.11 vs 3.36 (p=0.31)	3.6 vs 3.4 (p=0.58)	2.13 vs 3.09 (p<0.001)	2.42 vs 2.21 (p=0.53)
Intracranial hemorrhage	110 mg: 0.23 vs 0.74 (p<0.001) 150 mg: 0.30 vs 0.74 (p<0.001)	0.5 vs 0.7 (p=0.02)	0.33 vs 0.80 (p<0.001)	0.005 vs 0.003 (p=0.08)
GI bleeding	110 mg: 1.12 vs 1.02 (p=0.43) 150 mg: 1.51 vs 1.02 (p<0.001)	3.2 vs 2.2 (p<0.001)	0.76 vs 0.86 (p=0.37)	Not reported

Stroke Prophylaxis

- Cornerstone of therapy: OAC with warfarin
 - 60-70% risk reduction vs placebo
 - 30-40% risk reduction vs antiplatelet Rx/ASA
- Antiplatelet therapy: 22% risk reduction vs placebo
- ACTIVE W: Warfarin vs DAPT; 42% RRR
- ASA only: 19% risk reduction vs placebo (P=NS)
- Older patients (>65): Absolute benefit of OAC increases while effect of ASA declines

Warfarin "preferred therapy"

Hart: Ann Int Med, 2007 Connoly: Lancet, 2006

Conclusions

- OAC with warfarin effective → problematic
 - Underused leaving thousands unprotected
- New OAC agents show greater efficacy and safety vs warfarin
 - Stroke risk vs warfarin

- Complexities, cost and current state of CDS tools make it unlikely to move the bar significantly (vs warfarin)
- Effectiveness of any OAC will always be mitigated by risks of major bleeding and hemorrhagic stroke
 - Tools to predict that risk and "tailor" therapy inadequate at best
- Fear of bleeding

PROTECT-AF: Primary Efficacy Endpoint

Reddy, V et al. HRS 2013

MAYO CLINIC

PROTECT-AF: Primary Efficacy Endpoint

	Watchn (n =	nan Group = 463)	Warfa (n :	rin Group = 244)		Posterior F	Probabilities
Event	Events/ Patient-Years	Observed Rate (Events per 100 Patient-Years) (95% Crl)	Events/ Patient-Years	Observed Rate (Events per 100 Patient-Years) (95% Crl)	Rate Ratio (Watchman/Warfarin) (95% Crl)	Non- inferiority	Superiority
Primary Efficacy Endpoint	39/1720.2	2.3 (1.7, 3.2)	34/900.8	3.8 (2.5, 4.9)	0.60 (0.41, 1.05)	>0.999	0.960
Stroke	26/1720.7	1.5 (1.0, 2.2)	20/900.9	2.2 (1.3, 3.1)	0.68 (0.42, 1.37)	0.999	0.825
Ischemic Stroke	24/1720.8	1.4 (0.9, 2.1)	10/904.2	1.1 (0.5, 1.7)	1.26 (0.72, 3.28)	0.780	0.147
Hemorrhagic Stroke	3/1774.2	0.2 (0.0,0.4)	10/916.2	1.1 (0.5, 1.8)	0.15 (0.03, 0.49)	>0.999	0.999
Systemic Embolization	3/1773.6	0.2 (0.0, 0.4)	0/919.5	0.0	NA		
Cardiovascular Death	17/1774.3	1.0 (0.6, 1.5)	22/919.4	2.4 (1.4, 3.4)	0.40 (0.23, 0.82)	>0.999	0.995

Reddy, V et al. HRS 2013

e US, WATCHMAN is an investigational device, limited by applicable law to investigational use only and not available for sale. CE Mark 2005

Hemorrhagic Stroke: Comparison to Other Major Stroke Trials

Clinical Trial	CHADS ₂ Score (mean ± S.D.)	TTR	Event rate (per 100 pt-yrs)	95% CI
PROTECT AF (Warfarin Group)	2.3 ± 1.2	70%	1.1	(0.6, 2.0)
RELY	2.1 ± 1.1	64%	0.4	(0.3, 0.5)
ROCKET AF	3.5 ± 0.95	55%	0.4	(0.3, 0.6)
ARISTOTLE	2.1 ± 1.1	66%	0.5	(0.4, 0.6)
ACTIVE W	2.0 ± 1.1	64%	0.4	(0.2, 0.6)
SPORTIF V	N.R.*	68%	0.1	(0.0, 0.2)
SPORTIF III	N.R.	66%	0.4	(0.3, 0.9)
SPAF III	N.R.	61%	0.5	(0.1, 1.5)
SPAF II > 75 years	N.R.	—	1.8	(0.6, 3.5)

* N.R. = Not reported

Reddy, V et al. HRS 2013

Intention-to-Treat: All-Cause Mortality

Reddy, V et al. HRS 2013

ᠬᢧ

PROTECT AF: Primary Safety Endpoint

MAYO CLINIC

Reddy, V et al. HRS 2013

PREVAIL Trial Primary Endpoints

- Early Safety: Acute (7-day) occurrence of death, ischemic stroke, systemic embolism and procedure or device related complications requiring major cardiovascular or endovascular intervention
 - (Time-point = 7 days post randomization)
- Primary Efficacy: Comparison of composite of stroke, systemic embolism, and cardiovascular/unexplained death
 - (Time-point = 18 months)
- Late-Ischemic Efficacy: Comparison of ischemic stroke or systemic embolism occurring >7 days post randomization
 - (Time-point = 18 months)

Holmes, DR et al. JACC. In Press

PREVAIL Trial: Co-Primary Endpoints

Early Safety

\checkmark

Primary Efficacy

Late Ischemic Efficacy

In the US, WATCHMAN is an investigational device, limited by applicable law to investigational use only and not available for sale. CE Mark 2005

©2012 MFMER | slide-134

Procedure Implant Success

p = 0.04

Warfarin Discontinuation

Study	45-Day	6-Month	12-Month
PROTECT AF	86.6%	92.2%	93.2%
PREVAIL	92.2%	98.3%	99.3%

PROTECT-AF and CAP: Reddy, VY et al. *Circulation.* 2011;123:417-424; PREVAIL: Holmes, DR et al. JACC *In Press*

he US, WATCHMAN is an investigational device, limited by applicable law to investigational use only and not available for sale. CE Mark 200

Vascular Complications

 Composite of vascular complications includes cardiac perforation, pericardial effusion with tamponade, ischemic stroke, device embolization, and other vascular complications¹

No procedure-related deaths reported in any of the trials

PROTECT-AF and CAP: Reddy, VY et al. *Circulation.* 2011;123:417-424; PREVAIL: Holmes, DR et al. JACC *In Press* ¹¹Includes observed PE not necessitating intervention, AV fistula, major bleeding requiring transfusion, pseudoaneurysm, hematoma and groin bleeding

PREVAIL **Control (Warfarin) Group Performance**

- In spite of the high average CHADS₂ score of 2.6 in the control group, the observed rate of stroke in the PREVAIL Control group was lower than in other published warfarin studies
- PREVAIL control group rate = 0.7 (95% CI 0.1, 5.1)
 - Wide confidence bounds due to small number of patients with 18-months of follow-up

Trial	Control (Warfarin) Group Stroke, Systemic Embolism Rate (Per 100 PY)
PROTECT AF ¹	1.6
RE-LY (Dabigatran) ²	1.7
ARISTOTLE (Apixaban) ³	1.6
ROCKET AF (Rivaroxaban)⁴	2.2
PREVAIL ⁵	0.7

¹Ischemic stroke rate from Holmes et al. Lancet 2009; 374:534-42 MAYO ²Connolly et al. N Engl J Med 2009; 361:1139-51 ³Granger et al. *N Engl J Med* 2011; 365:981-92 ⁴Patel et al. N Engl J Med 2011: 365:883-91 ⁵PREVAIL: Holmes, DR et al. JACC In Press

Future Predictions and Prospective New and Next Generation Devices

n the US, All devices shown are limited by applicable law to investigational use only and not available for sale

Future Predictions and Prospective New New Oral Anti-Coagulants

The design and rationale for the Acute Medically III Venous Thromboembolism Prevention with Extended Duration Betrixaban (APEX) study $\stackrel{\leftrightarrow}{}$

Alexander T. Cohen, MD, ^a Robert Harrington, MD, ^b Samuel Z. Goldhaber, MD, ^c Russell Hull, MD, ^d C. Michael Gibson, MD, ^c Adrian F. Hernandez, MD, MHS, ^e Michael M. Kitt, MD, ^{f,g} and Todd J. Lorenz, MD ^h London, United Kingdom

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Edoxaban versus Warfarin in Patients with Atrial Fibrillation

Robert P. Giugliano, M.D., Christian T. Ruff, M.D., M.P.H., Eugene Braunwald, M.D., Sabina A. Murphy, M.P.H., Stephen D. Wiviott, M.D., Jonathan L. Halperin, M.D., Albert L. Waldo, M.D., Michael D. Ezekowitz, M.D., D.Phil., Jeffrey I. Weitz, M.D., Jindřich Špinar, M.D., Witold Ruzyllo, M.D., Mikhail Ruda, M.D., Yukihiro Koretsune, M.D., Joshua Betcher, Ph.D., Minggao Shi, Ph.D., Laura T. Grip, A.B., Shirali P. Patel, B.S., Indravadan Patel, M.D., James J. Hanyok, Pharm.D., Michele Mercuri, M.D., and Elliott M. Antman, M.D., for the ENGAGE AF-TIMI 48 Investigators*

Future Predictions and Prospective Cost Effectiveness Research

C	Inculation	Merican Heart
Г		
E	Clinical Therapeutics/Volume 36, Number 2, 2014	
	Cost-Effectiveness of Apixaban Versus Other New Ora Anticoagulants for Stroke Prevention in Atrial Fibrillat	al tion☆
	Gregory Y.H. Lip ¹ ; Thitima Kongnakorn ² ; Hemant Phatak ³ ; Andreas Kuznik ⁴ ; Tereza Lanitis ⁵ ; Larry Z. Liu ⁶ ; Uchenna Iloeje ⁷ ; Luis Hernandez ⁸ ; and Paul De	; orian ⁹

1142-108 - Cost Utility and Quality of Life Impact of Left Atrial Appendage Closure Compared to Warfarin for Stroke Prevention in Atrial Fibrillation

View session detail

63rd Annual Scientific Session & Expo

Author Block: Vivek Reddy, Ronald L. Akehurst, Stacey L. Amorosi, Shannon Armstrong, Colin Taggart, Steve Beard, Chris Knight, David Holmes, Boston Scientific, Natick, MA, USA

the US, WATCHMAN is an investigational device, limited by applicable law to investigational use only and not available for sale. CE Mark 2005

Future Predictions and Prospective Imaging

Future Predictions and Prospective Guidelines

Accepted Manuscript

2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation

Craig T. January, MD, PhD, FACC L. Samuel Wann, MD, MACC, FAHA Joseph S. Alpert, MD, FACC, FAHA Hugh Calkins, MD, FACC, FAHA, FHRS Joseph C. Cleveland Jr., MD, FACC Joaquin E. Cigarroa, MD, FACC Jamie B. Conti, MD, FACC, FHRS Patrick T. Ellinor, MD, PhD, FAHA Michael D. Ezekowitz, MB, ChB, FACC, FAHA Michael E. Field, MD, FACC, FHRS Katherine T. Murray, MD, FACC,

FAHA, FHRS Ralph L. Sacc FHRS Patrick J. Tchou, MD, Yancy, MD, FACC, FAHA

European Heart Journal (2013) 34, 2094-2106 doi:10.1093/eurheartj/eht134

EHRA Practical Guide on the use of new oral anticoagulants in patients with non-valvular atrial fibrillation: executive summary[†]

Hein Heidbuchel¹*, Peter Verhamme¹, Marco Alings², Matthias Antz³, Werner Hacke⁴, Jonas Oldgren⁵, Peter Sinnaeve¹, A. John Camm⁶, and Paulus Kirchhof^{7,8}

Risk of Triple Therapy

- AF linked to increased likelihood of vascular disease → ACS
- 82,000 patients follow-up 2.6 years
 - 3.7-fold increased risk triple therapy vs warfarin
 - 11.4% fatal or nonfatal major bleeds
 - OAC + DAPT 15.7%/patient-year
 - OAC + clopidogrel only 13.9%/patient-year

